<u>Year 3</u>	<u>Year 4</u>	<u>Year 5</u>	<u>Year 6</u>	End of Key Stage
				<u>Expectations</u>
Y3 Animals including	Y4 Animals including	Y5 Animals including	Y6 Animals including	Working scientifically
humans	humans	humans	humans	
1. identify that		1. describe the		The pupil can, using
animals, including	1. describe the simple	changes as humans	identify and name the	appropriate scientific
humans, need the right	functions of the basic	develop to old age	main parts of the human	language from the
types and amount of	parts of the digestive	<u>Y5 Earth and space</u>	circulatory system, and	national curriculum: •
nutrition, and that they	system in humans	1. describe the	describe the functions of	
cannot make their own		movement of the Earth,	the heart, blood vessels	describe and evaluate
food; they get nutrition	2. identify the	and other planets,	and blood	their own and others'
from what they eat	different types of teeth in	relative to the Sun in the	recognise the impact of	scientific ideas related to
2. identify that	humans and their simple	solar system	diet, exercise, drugs and	topics in the national
humans and some other	functions	2. describe the	lifestyle on the way their	curriculum (including
animals have skeletons		movement of the Moon	bodies function	ideas that have changed
and muscles for support,	3. construct and	relative to the Earth	describe the ways in	over time), using evidence
protection and movement	interpret a variety of food	3. describe the Sun,	which nutrients and water	from a range of sources \cdot
	chains, identifying	Earth and Moon as	are transported within	ask their own questions
<u>Y3 Forces and</u>	producers, predators and	approximately spherical	animals, including	about the scientific
<u>Magnets</u>	prey	bodies	humans	phenomena that they are
				studying, and select the
	<u>Y4 Electricity</u>	4. use the idea of the	Y6 Living things and	most appropriate ways to
		Earth's rotation to explain	their habitats	answer these questions,
		day and night and the		recognising and

1. compare how	1. identify common	apparent movement of		controlling variables
things move on different	appliances that run on	the sun across the sky	describe how living things	where necessary (i.e.
surfaces	electricity		are classified into broad	observing changes over
2. notice that some	2. construct a simple	<u>Y5 Forces</u>	groups according to	different periods of time,
forces need contact	series electrical circuit,	1. explain that	common observable	noticing patterns,
between two objects, but	identifying and naming its	unsupported objects fall	characteristics and based	grouping and classifying
magnetic forces can act	basic parts, including	towards the Earth	on similarities and	things, carrying out
at a distance	cells, wires, bulbs,	because of the force of	differences, including	comparative and fair
3. observe how	switches and buzzers	gravity acting between	micro-organisms, plants	tests, and finding things
magnets attract or repel	3. identify whether or	the Earth and the falling	and animals	out using a wide range of
each other and attract	not a lamp will light in a	object	give reasons for	secondary sources) • use a
some materials and not	simple series circuit,	2. identify the effects	classifying plants and	range of scientific
others	based on whether or not	of air resistance, water	animals based on specific	equipment to take
4. compare and group	the lamp is part of a	resistance and friction,	characteristics	accurate and precise
together a variety of	complete loop with a	that act between moving		measurements or
everyday materials on the	battery	surfaces	Y6 Evolution and	readings, with repeat
basis of whether they are	4. recognise that a	3. recognise that	<u>inheritance</u>	readings where
attracted to a magnet,	switch opens and closes a	some mechanisms,		appropriate • record data
and identify some	circuit and associate this	including levers, pulleys	recognise that living	and results using scientific
magnetic materials	with whether or not a	and gears, allow a	things have changed over	diagrams and labels,
5. describe magnets	lamp lights in a simple	smaller force to have a	time and that fossils	classification keys, tables,
as having two poles	series circuit	greater effect	provide information about	scatter graphs, bar and
6. predict whether	5. recognise some	<u>Y5 Living things and</u>	living things that	line graphs • draw
two magnets will attract	common conductors and	<u>their habitats</u>	inhabited the Earth	conclusions, explain and
or repel each other,	insulators, and associate	1. describe the differences	millions of years ago	evaluate their methods
		in the life cycles of a		and findings,

depending on which poles	metals with being good	mammal, an amphibian,	recognise that living	communicating these in a
are facing	conductors	an insect and a bird	things produce offspring	variety of ways • raise
	<u>Y4 Living things and</u>	2. describe the life	of the same kind, but	further questions that
<u>Y3 Rocks</u>	<u>their habitats</u>	process of reproduction in	normally offspring vary	could be investigated,
	1. recognise that living	some plants and animals	and are not identical to	based on their data and
1. compare and group	things can be grouped in	<u>Y5 Properties and</u>	their parents	observations.
together different kinds of	a variety of ways	<u>changes of materials</u>	identify how animals and	
rocks on the basis of their	2. explore and use	1. compare and group	plants are adapted to suit	<u>Science content</u>
appearance and simple	classification keys to help	together everyday	their environment in	
physical properties	group, identify and name	materials on the basis of	different ways and that	The pupil can: \cdot name and
2. describe in simple	a variety of living things	their properties, including	adaptation may lead to	describe the functions of
terms how fossils are	in their local and wider	their hardness, solubility,	evolution	the main parts of the
formed when things that	environment	transparency,	<u>Y6 Light</u>	digestive [year 4],
have lived are trapped	3. recognise that	conductivity (electrical		musculoskeletal [year 3]
within rock	environments can change	and thermal), and	recognise that light	and circulatory systems
3. recognise that soils	and that this can	response to magnets	appears to travel in	[year 6]; and describe
are made from rocks and	sometimes pose dangers	2. know that some	straight lines	and compare different
organic matter	to living things	materials will dissolve in	use the idea that light	reproductive processes
	<u>Y4 Sound</u>	liquid to form a solution,	travels in straight lines to	and life cycles in animals
Working scientifically	1. identify how sounds	and describe how to	explain that objects are	[year 5] • describe the
Ask relevant questions	are made, associating	recover a substance from	seen because they give	effects of diet, exercise,
and using different types	some of them with	a solution	out or reflect light into	drugs and lifestyle on
of scientific enquiries to	something vibrating	3. use knowledge of	the eye	how the body functions
answer them.	2. recognise that	solids, liquids and gases	explain that we see things	[year 6]•name, locate
	vibrations from sounds	to decide how mixtures	because light travels from	and describe the functions
		might be separated,	light sources to our eyes	of the main parts of

Set up simple practical	travel through a medium	including through	or from light sources to	plants, including those
enquiries, comparative	to the ear	filtering, sieving and	objects and then to our	involved in reproduction
and fair tests.	3.find patterns between	evaporating	eyes	[year 5] and transporting
Make organised and	the pitch of a sound and	4. give reasons, based on	use the idea that light	water and nutrients [year
careful observations and,	features of the object that	evidence from	travels in straight lines to	3]
where appropriate, taking	produced it	comparative and fair	explain why shadows	use the observable
accurate measurements	4. find patterns between	tests, for the particular	have the same shape as	features of plants,
using standard units,	the volume of a sound	uses of everyday	the objects that cast them	animals and micro-
using a range of	and the strength of the	materials, including	Y6 Electricity	organisms to group,
equipment, including	vibrations that produced	metals, wood and plastic		classify and identify them
thermometers and data	it	5. demonstrate that	associate the brightness	into broad groups, using
loggers.	5. recognise that sounds	dissolving, mixing and	of a lamp or the volume	keys or other methods
Gather, record, classify	get fainter as the distance	changes of state are	of a buzzer with the	[year 6] • construct and
and present data in a	from the sound source	reversible changes	number and voltage of	interpret food chains
variety of ways to help in	increases	6. explain that some	cells used in the circuit	[year 4] • describe the
answering questions.		changes result in the	compare and give reasons	requirements of plants for
Record findings using	<u>Y4 States of Matter</u>	formation of new	for variations in how	life and growth [year 3];
simple scientific language,	1. compare and group	materials, and that this	components function,	and explain how
drawings, labelled	materials together,	kind of change is not	including the brightness	environmental changes
diagrams, keys, bar	according to whether	usually reversible,	of bulbs, the loudness of	may have an impact on
charts, and tables.	they are solids, liquids or	including changes	buzzers and the on/off	living things [year 4] • use
Report on findings from	gases	associated with burning	position of switches	the basic ideas of
enquiries, including oral	2. observe that some	and the action of acid on	use recognised symbols	inheritance, variation and
and written explanations,	materials change state	bicarbonate of soda	when representing a	adaptation to describe
displays or presentations	when they are heated or		simple circuit in a	how living things have
of results and conclusions.	cooled, and measure or	Working scientifically	diagram	changed over time and

Use results to draw	research the temperature	Plan different types of		evolved [year 6]; and
simple conclusions, make	at which this happens in	scientific enquiries to	Working scientifically	describe how fossils are
predictions for new	degrees Celsius (°C)	answer questions,	Plan different types of	formed [year 3] and
values, suggest	3. identify the part	including recognising and	scientific enquiries to	provide evidence for
improvements and ask	played by evaporation	controlling variables	answer questions,	evolution [year 6] • group
further questions.	and condensation in the	where necessary.	including recognising and	and identify materials
Identify differences,	water cycle and associate		controlling variables	[year 5], including rocks
similarities or changes	the rate of evaporation	Take measurements,	where necessary.	[year 3], in different ways
related to simple scientific	with temperature	using a range of scientific		according to their
ideas and processes.		equipment, with	Take measurements,	properties, based on first-
Use simple scientific	<u>Working scientifically</u>	increasing accuracy,	using a range of scientific	hand observation; and
evidence to answer	Ask relevant questions	taking repeat readings	equipment, with	justify the use of different
questions or to support	and using different types	when appropriate.	increasing accuracy,	everyday materials for
their findings.	of scientific enquiries to		taking repeat readings	different uses, based on
	answer them.	Record data and results	when appropriate.	their properties [year 5] •
	Set up simple practical	of increasing complexity		describe the
	enquiries, comparative	using scientific diagrams	Record data and results	characteristics of different
	and fair tests.	and labels, classification	of increasing complexity	states of matter and
	Make organised and	keys, tables, scatter	using scientific diagrams	group materials on this
	careful observations and,	graphs, bar and line	and labels, classification	basis; and describe how
	where appropriate, taking	graphs.	keys, tables, scatter	materials change state at
	accurate measurements		graphs, bar and line	different temperatures,
	using standard units,	Use test results to make	graphs.	using this to explain
	using a range of	predictions to set up		everyday phenomena,
	equipment, including	further comparative and	Use test results to make	including the water cycle
		fair tests.	predictions to set up	[year 4]•identify and

thermometers and data		further comparative and	describe what happens
loggers.	Report and present	fair tests.	when dissolving occurs in
Gather, record, classify	findings from enquiries in		everyday situations; and
and present data in a	oral and written forms	Report and present	describe how to separate
variety of ways to help in	such as displays and	findings from enquiries in	mixtures and solutions
answering questions.	other presentations. This	oral and written forms	into their components
Record findings using	includes drawing	such as displays and	[year 5] • identify, with
simple scientific language,	conclusions, and	other presentations. This	reasons, whether changes
drawings, labelled	explaining how things	includes drawing	in materials are reversible
diagrams, keys, bar	happen and how far I	conclusions, and	or not [year 5] • use the
charts, and tables.	trust the results found.	explaining how things	idea that light from light
Report on findings from		happen and how far I	sources, or reflected light,
enquiries, including oral	Identify scientific evidence	trust the results found.	travels in straight lines
and written explanations,	that has been used to		and enters our eyes to
displays or presentations	support or refute ideas or	Identify scientific evidence	explain how we see
of results and conclusions.	arguments.	that has been used to	objects [year 6], and the
Use results to draw		support or refute ideas or	formation [year 3], shape
simple conclusions, make		arguments.	[year 6] and size of
predictions for new			shadows [year 3] • use
values, suggest			the idea that sounds are
improvements and ask			associated with
further questions.			vibrations, and that they
Identify differences,			require a medium to
similarities or changes			travel through, to explain
related to simple scientific			how sounds are made
ideas and processes.			and heard [year 4] •

Use simple scientific	describe the relationship
evidence to answer	between the pitch of a
questions or to support	sound and the features of
their findings.	its source; and between
	the volume of a sound,
	the strength of the
	vibrations and the
	distance from its source
	[year 4] • describe the
	effects of simple forces
	that involve contact (air
	and water resistance,
	friction) [year 5], that act
	at a distance (magnetic
	forces, including those
	between like and unlike
	magnetic poles) [year 3],
	and gravity [year 5] •
	identify simple
	mechanisms, including
	levers, gears and pulleys,
	that increase the effect of
	a force [year 5] • use
	simple apparatus to
	construct and control a
	series circuit, and describe

		how the circuit may be
		affected when changes
		are made to it; and use
		recognised symbols to
		represent simple series
		circuit diagrams [year 6] •
		describe the shapes and
		relative movements of the
		Sun, Moon, Earth and
		other planets in the solar
		system; and explain the
		apparent movement of
		the sun across the sky in
		terms of the Earth's
		rotation and that this
		results in day and night
		[year 5].